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Abstract

Analytical solutions are obtained for the temperature and Nusselt number distribution in the thermal entrance region of a parallel
plate microchannel under the combined action of pressure-driven and electroosmotic transport mechanisms, by taking into account
the effects of viscous dissipation, Joule heating and axial conduction simultaneously, in the framework of an extended Graetz problem.
Step changes in wall temperature are considered to represent physically conceivable thermal entrance conditions. The solution of the
temperature distributions at the various channel sections essentially involves the determination of a set of eigenvalues and eigenfunctions
corresponding to a Sturm Liouiville problem with non self-adjoint operators. The resultant eigenfunctions are non orthogonal in nature,
and are obtained in the forms of hypergeometric functions. Parametric variations on the effects of the relative strengths of the pressure
gradients and the electric field, ratio of the rate of heat generation to the rate of wall heat transfer, and the Peclet number are analyzed in
details, in terms of their influences on the temperature field as well as the Nusselt number distribution.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

With challenging demands for high throughput screen-
ing in biomedical and biotechnological applications,
micro-scale transport processes have been receiving increas-
ingly intensive attention from the concerned research com-
munity over the past few years. Various flow actuation
methodologies have been explored by the researchers for
efficient design of such microfluidic systems. In many prac-
tical applications involving the Lab-on-a-Chip based
Micro-Total-Analysis systems, electroosmotic flow actua-
tion mechanisms [1–4] have been found to offer with extre-
mely efficient methodologies for manipulating the transport
of polar solvents (often carrying different types of biological
samples). Fundamentally, the origin of electroosmotic flows
through microchannels can be attributed to the fact that
when a solid is in contact with an electrolyte, the chemical
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state of the surface is generally altered, either by ionization
of covalently bound surface groups or by ion adsorption.
As a result, the surface inherits a charge while counter-ions
are released into the liquid. At equilibrium, a balance
between electrostatic interactions and thermal agitation
generates a charge density profile. The liquid is electrically
neutral, but for a charged layer adjacent to the boundary,
which bears a charge locally equal in amplitude and oppo-
site in sign to the bound charge on the surface. This charged
layer is commonly known as the electric double layer
(EDL). If a potential gradient is applied along the micro-
channel axis in presence of the charge density distribution
within the EDL, fluid elements located within the diffuse
EDL tend to move under the action of electrostatic forces.
Due to a cohesive nature of the hydrogen bonding in the
polar solvent molecules, the entire buffer solution is pulled,
leading to a net electrokinetic body force on the bulk fluid.
This electroosmotic force, in effect, is a combined function
of the charge density distribution and the imposed electric
field.
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Nomenclature

a channel half width [m]
An, Bn expansion coefficients
Ex electric field in stream wise direction [V/m]
fn, gn eigenfunctions
G1 normalized generation term E2

xra2=kðT 0 � T wÞ
G2 normalized viscous dissipation term lU 2

HS=
kðT 0 � T wÞ

Pe Peclet number
To wall temperature in upstream region [K]
Tw wall temperature in downstream region [K]
Nu Nusselt number
Nui local Nusselt number
u(g) dimensionless velocity profile
UHS Helmholtz–Smoluchowski velocity [m/s]
x axial coordinate [m]
y transverse coordinate [m]
kB Boltzmann constant (1.3805 � 10�23 J mol �1

K�1)

Greek symbols

kn, bn eigenvalues

g dimensionless transverse coordinate y/a
h dimensionless temperature distribution T � Tw/

T0 � Tw

hb dimensionless bulk mean temperature
hp particular solution to dimensionless temperature

distribution
X normalized pressure gradient
n dimensionless axial coordinate x/aPe

r electrical conductivity [S/m]
w electro kinetic potential [V]
q fluid density [kg/m3]
qe electric charge density [C/m3]
e fluid dielectric constant
e0 permittivity of vacuum (8.85 � 10�12 C V�1

m�1)
f zeta potential [V]
a thermal diffusivity [m2/s]
l dynamic viscosity [N s/m2]
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As compared to the conventional pressure-driven flow
mechanisms, the electroosmotic flow offers with several
advantages, such as much simpler operations in the
absence of any moving components and plug-like velocity
profiles characterized with less severe solute dispersion
effects. However, despite having these advantageous fea-
tures, electroosmotic flow mechanisms are also associated
with inevitable side effects of Joule heating. This internal
heat generation might give rise to uncontrolled rises in tem-
perature, which might be detrimental for the handling of
thermally labile biological samples. Research studies [2,3]
have already demonstrated that the effects of Joule heating
can result in low column separation efficiency, reduction of
analysis resolution, and even loss of injected samples.
Additionally, temperature rise in microchannels due to
Joule heating has been found to be responsible for the
unwarranted formation of gas bubbles. Moreover, for han-
dling biological macromolecules (such as DNA) with high
negative electrophoretic mobilities, electroosmotic pump-
ing of the sample necessitates a buffer with a large electro-
osmotic mobility so that the driving electroosmotic forces
can overcome the negative electrophoretic mobility of the
macromolecules. Unfortunately, buffers used in macromo-
lecular separation or hybridization often contain salts in
high concentrations, which reduce the electroosmotic
effects to a considerable extent. In that perspective, pump-
ing using mechanical pressure might possess some advanta-
ges over the electroosmotic approach in the sense that the
former is insensitive to the variations in pH, macromolec-
ular charges and the salt concentration. However, because
of the huge pumping power requirements and considerable
sample dispersion, mechanical pumping alone might not be
a preferred mechanism for driving fluid flow through
micro-scale conduits for these applications. Furthermore,
because of the high back-pressures generated due to the
considerable flow resistances associated with mechani-
cally-pumped microchannel flows involving large pressure
gradients, leakage prevention might itself pose a challeng-
ing operational problem, if the unit is not properly sealed.
As a compromise, researchers have recently proposed [2]
the employment of combined electroosmotic and pres-
sure-driven transport mechanisms for pumping the flow
of liquids through microchannels, especially for biotechno-
logical applications.

Although several theoretical studies have appeared in
the literature describing the hydrodynamics of electroos-
motic flow through circular and rectangular microchan-
nels, relatively little prior work has appeared in the
literature on the characterization of convective heat trans-
fer associated with electroosmotic flows. Recently, Maynes
and Webb [5] presented a detailed thermal analysis of elec-
troosmotic flows in circular microtubes and parallel plate
microchannels. Extending these underlying principles,
Chakraborty [6] developed closed form expressions for
Nusselt number variations in thermally fully developed
microtube flows, under the combined influence of electro-
osmotic forces and imposed pressure gradients. However,
the above-mentioned studies were limited only towards
analyzing the thermally fully developed transport regimes.
Horiuchi and Dutta [7], for the first time, obtained semi-
analytical solutions for temperature distributions and heat
transfer characteristics in the thermally developing regimes
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Fig. 1. A schematic representation of the physical problem, where the step
jump in wall temperature at X = 0 mimics the thermal entrance condition.
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of electroosmotic flows in microchannels. Their analysis
accounted for the interaction between convection, viscous,
and Joule heating terms, so as to obtain the temperature
distribution in the microchannel. This analysis was based
on an infinitesimal electric double layer thickness, in
which the velocity profiles are virtually of ‘plug’ type,
except for a very thin layer (essentially the EDL) very
close to the wall. Both the constant surface temperature
and the constant surface heat flux conditions were consid-
ered in their study. The method of separation of variables
was employed to obtain expressions for temperature dis-
tributions from the energy conservation equation for elect-
roosmotically driven flows. Heat transfer characteristics
were presented for low Reynolds number microflows, in
which the viscous and Joule heating effects are likely to
be of profound importance. For the parameter range cov-
ered in their study, the Nusselt number was found to be
independent of the thermal Peclet number, except in the
thermally developing region. Results for the cases with
and without Joule heating were also compared successfully
in their study.

From an extensive review of the published literature, it
is revealed that there have been only few attempts
reported in the literature to solve the Graetz problem
defined on an appropriate physical basis of electroosmot-
ically driven microchannel flows. The original Graetz
problem, as discussed in the literature more than a century
ago, is a simplified problem of laminar forced convective
heat transfer in a circular tube, which was first analytically
solved by Graetz [8], by assuming hydrodynamically fully
developed flow and neglecting streamwise heat conduction
and viscous dissipation. Sellars et al. [9] extended the ori-
ginal Graetz problem, including a more effective approxi-
mation technique for solving the eigenvalues problem.
Lahjomri et al. [10] extended the solution of the Gratez
problem to include streamwise conduction effects. Several
researchers [11,12] in the recent past presented analytical
solutions of the Gratez problem for microchannel gas
flows, incorporating wall-slip boundary conditions. Dutta
et al. [13], in a very recent study, numerically analyzed the
thermally developing characteristics of mixed electroos-
motic and pressure-driven microflows. This study was exe-
cuted with the classical consideration of a prescribed
uniform temperature profile at the channel inlet. Although
this consideration is consistent with the definition of a
well-posed mathematical problem, the practical aspects
of the same may be seriously questioned. This is because
of the fact that in practice, it is virtually an impossible
proposition to maintain the thermal entrance temperature
to be uniform, in presence of heat sources such as viscous
dissipation and Joule heating. In fact, with an arbitrarily
imposed uniform temperature profile at the channel inlet,
it is hard to conceptualize an experimental procedure
without disturbing the hydrodynamically fully developed
velocity field that is consistent with the solution of the
Graetz problem [14]. However, no study has yet been
reported in the literature to offer with a detailed analysis
of the thermal entrance region for electrokinetically driven
microchannel flows by incorporating such considerations
of physically conceivable thermal entrance conditions, in
the form of an extended Graetz problem.

Aim of the present study is to obtain analytical solu-
tions for the extended Gratez problem in combined elect-
roosmotically and pressure driven microchannel flows,
with a simultaneous consideration of the effects of stream-
wise conduction, viscous dissipation, and Joule heating,
corresponding to a step-change in wall temperature that
physically mimics the thermal condition at the channel
entrance. The effect of axial heat conduction becomes
important at low Peclet numbers. The problem is consid-
ered in two semi infinite regions of the channel, in
upstream (�1 < x < 0) and downstream (0 < x <1)
regions.The temperature is then determined in both
regions and the two solutions are matched at x = 0 where
the heating or cooling starts. This type of problem is
related to determination of a set of eigenvalues and eigen-
functions of Sturm Liouiville non self-adjoint operators.
The result is that the eigenfunctions become non orthogo-
nal and simple determination of related expansion coeffi-
cients by classical method fails. Because of the presence
of axial heat conduction term, transverse variations in
temperature exists in region x < 0 because of the heat con-
ducted upstream. The main difficulty comes from the sin-
gularity which exists for channel wall temperature for
x = 0, which creates a problem for numerical modelers.
Therefore, analytical solution is required to resolve the
singularity. In effect, temperature distributions in the
channel are determined as parametric functions of the rel-
ative strengths of the pressure-driven and electroosmotic
flow components, and the relative strengths of Joule heat-
ing and viscous dissipation with respect to the thermal
conduction effects. Several limiting cases are also retrieved
from the analytical solution, corresponding to the ther-
mally fully developed condition.
2. Mathematical modeling

We consider a combined electroosmotically and pres-
sure-driven fluidic transport through a long parallel plate
microchannel of height 2a, and width W, with W� 2a.
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The fluid flow is acted upon by an axial electric field of
strength Ex, as shown in Fig. 1. Over and above this electric
field, a constant axial pressure gradient P x ¼ � dp

dx acts on the
fluid. The flow is assumed to be hydrodynamically fully
developed. The channel walls are maintained at temperature
T0 for x < 0. The wall temperature is suddenly changed to
Tw for x > 0. For the present mathematical analysis, follow-
ing major assumptions are made:

(i) The fluid is Newtonian and incompressible.
(ii) The fluid viscosity is independent of the local ionic

concentration.
(iii) Fluid properties are not appreciably sensitive to the

changes in temperature, over the temperature range
considered in this study (�10 K).

(iv) The solvent is continuous, and its permittivity is unaf-
fected by the electric field strength.

(v) The ionic species behave as point charges.
(vi) The zeta potential is uniform throughout the channel

walls.
(vii) The Boltzmann distribution of ionic concentration

remains valid. This assumption is justified when there
is negligible axial gradient of the ionic concentration
within the microchannel and the flow Peclet number
is sufficiently small, which are considered to be
appropriate for the present study. Another important
assumption that goes with this consideration is that
the EDLs formed in vicinity of the microchannel
walls do not overlap and protrude into the centerline,
so that a far-stream boundary condition for the ionic
charge densities can be imposed on the channel
centerline.

(viii) The volumetric heating arises from the conduction
current only and may be safely modeled using Ohm’s
law. Further, this energy generation is assumed to be
distributed uniformly across the channel cross-sec-
tion, which is a justified proposition for low zeta
potential or for large hydraulic diameter-to-Debye
length ratios, as considered in the present study.

The fundamental origin of the EDL effects lies in the
fact that the channel walls may attain a net positive or neg-
ative charge due to ion adsorption from the polar liquid
molecules adjacent to the solid surface. This surface charge
is effectively balanced by the counter-ions present in the
fluid medium. There is a thin layer of ions adsorbed on
the charged surface, which is known as the Stern layer.
The outer region, where ions are in rapid thermal motion,
is called the diffuse EDL. The EDL formed is typically of
the order of a few nm in thickness or somewhat thicker,
depending on ionic concentration of the solution (higher
the ion concentration, lower the EDL thickness). When
the EDL thickness is much smaller than the channel
hydraulic radius, the probability of finding an ion at a par-
ticular point within the EDL is proportional to the Boltz-
mann factor, e�zew=kBT , where z is the valence of the
concerned charge, e is the electronic charge, w is the elec-
troosmotic potential, kB is the Boltzmann constant and T

is absolute temperature. Accordingly, for a binary fluid
consisting of two kinds of ions of equal and opposite
charge z+ and z�, the number of ions of each type can be
described by the Boltzmann distribution, given as:
n� ¼ n0ezew=kBT and nþ ¼ n0e�zew=kBT , where n0 is the average
number of positive or negative ions in the buffer. The net
charge density per unit volume is accordingly given as

q ¼ ðnþ � n�Þze ¼ �2n0ze sinhðzew=kBT Þ ð1Þ

Based on this charge density distribution, the electroos-
motic potential distribution can be readily obtained by
employing the Poisson–Boltzmann equation, which is of
the form [7]:

r2w ¼ � q
ee0

ð2Þ

where e is the dielectric constant of the medium and e0 is
permittivity of vacuum. In the present case, the above leads
to the following ordinary differential equation:

d2w
dy2
¼ 2n0ze

ee0

sinh
zew
kBT

� �
ð2aÞ

The variables appearing in the above equations can be non-
dimensionalized by employing suitable non-dimensional
parameters as: g ¼ y

a,
�w ¼ zew

kBT and �qðgÞ ¼ qðgÞ
n0ze, so as to

obtain

d2 �w
dg2
¼ k2 sinhð�wÞ ð3Þ

where k = (a/kD), with 1=kD ¼ ð2n0z2e2=ee0kBT Þ�
1
2. Here,

kD is the characteristic thickness of the EDL, also known
as the Debye length. We further assume here that the wall
zeta potential is small enough (f < 3kBT) so that the De-
bye–Hückel linearization approximation can be applied
[11]. With the pertinent boundary conditions as �w ¼ �f at
g = ±1 (where �f ¼ zef

kBT), or equivalently, d�w
dg ¼ 0; g ¼ 0, the

linearized Poisson Boltzmann equation can be solved, to
obtain the EDL potential distribution as

�w ¼
�f

coshðkÞ coshðkgÞ ð4Þ

Using this potential variation, one may obtain the follow-
ing charge density distribution:

qðgÞ ¼ n0ze�qðgÞ ¼ �2n0ze sinhð�wÞ � �2n0ze�w

¼ � k2ef
a2

coshðkgÞ
coshðkÞ ð4aÞ

In presence of the above-mentioned charge density distri-
bution, if a potential gradient is applied along the channel
axis, fluid elements located within the diffuse EDL tend to
move under the action of electrostatic forces. Due to a
cohesive nature of the hydrogen bonding in the polar sol-
vent molecules, the entire buffer solution is pulled, leading
to a net electrokinetic body force on the bulk fluid. This
electroosmotic force is a combined function of the charge
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density distribution and the imposed electric field. Super-
imposed on this effect is the influence of an applied pressure
gradient, which gives rise to the steady state velocity distri-
bution within the microchannel. This can be obtained by
solving the Navier–Stokes equation, described as

qfð~u � ~rÞ~u ¼ � ~rp þ lr2~uþ~F ð5Þ
where ~u is the velocity field, qf is the fluid density, p is the
pressure, l is the dynamic viscosity. For a hydrodynami-
cally fully developed flow, Eq. (5) gets simplified to the fol-
lowing form:

� dp
dx
þ l

d2u
dy2
þ qEx ¼ 0 ð6Þ

Subjected to the boundary conditions: u(y = a) = 0,
du
dy ðy ¼ 0Þ ¼ 0, Eq. (6) can be analytically solved, to obtain
the following velocity profile in a non-dimensional form:

u
U HS

¼ �P xa2

2lU HS

ð1� g2Þ þ 1� coshðkgÞ
cosh k

� �
ð7Þ

where U HS ¼ �efEx
l is a reference electroosmotic velocity. It is

also important to note here that while interpreting the
above solution, one may mathematically approximate the
electroosmotic flow from an equivalent slip velocity consid-
eration, which allows one to neglect the details of the charge
distribution within the double layer, based on the consider-

ation that 1� coshðkgÞ
cosh k

� �
� 1 for almost over the entire chan-

nel cross-section, except for within the thin EDL. This
assumption has been successfully employed by many
researchers, including the studies recently reported by Hor-
iuchi and Dutta [7], with an understanding that the contri-
bution of the electrososmotic fields towards the viscous
dissipation effects may be taken as negligible as compared
to the corresponding influences on the Joule heating effects,
provided that the channel hydraulic radius is at least one or-
der of magnitude larger than the characteristic EDL thick-
ness. Considerations adopted in the present study, indeed,
support this conjecture, so that one may write: uðgÞ ¼

u
UHS
¼ Xð1� g2Þ þ 1, where X ¼

�Pxa2

2l

UHS
.

For obtaining the temperature distribution, the energy
equation can be employed in the following form:

qf cpu
oT
ox
¼ k

o2T
ox2
þ o2T

oy2

� �
þ l

ou
oy

� �2

þ E2
xr ð8Þ

where k is thermal conductivity, cp is the specific heat, i is
the ionic current density, and r is the electrical conductiv-
ity. The penultimate term in the right hand side of Eq. (8)
represents the effects of viscous dissipation, and the final
term represents the effects of Joule heating. Introducing
the following normalization parameters: h ¼ T�T w

T 0�T w
,

n ¼ x
aPe, Pe ¼ UHSa

a , a ¼ k
qCp

, G1 ¼ E2
xra2

kðT 0�T wÞ ;G2 ¼
lU2

HS

kðT 0�T wÞ ; Eq.
(8) can be expressed in a non dimensional form, as

uðgÞ oh
on
¼ 1

Pe2

o
2h

on2

� �
þ o

2h
og2
þ G2

ou
og

� �2

þ G1 ð9Þ

so that
h ¼ h1 for �1 < n < 0 ð9aÞ
h ¼ h2 for 0 < n <1 ð9bÞ

The pertinent boundary conditions are as follows:

ohi

og
¼ 0 for g ¼ 0 8 �1 < n <1 ði ¼ 1; 2Þ ð10aÞ

h1 ¼ 1 for g ¼ 1 8 �1 < n < 0 ð10bÞ
h2 ¼ 0 for g ¼ 1 80 < n <1 ð10cÞ
h1 ¼ 1 for n! �1 80 6 g 6 1 ð10dÞ
h2 ¼ 0; for n! þ1 80 6 g 6 1 ð10eÞ
h1 ¼ h2 for n ¼ 0 80 6 g 6 1 ð10fÞ
oh1

on
¼ oh2

on
for n ¼ 0 80 6 g 6 1 ð10gÞ

For very large values of n (i.e., n ? ±1), the temperature
profile is represented by particular integral of the following
equation:

o2h
og2
þ G2

ou
og

� �2

þ G1 ¼ 0 ð11Þ

The above equation satisfies the following boundary
conditions:

oh
og

� �
g¼0

¼ 0 ð12aÞ

hg¼1¼ 0 for n!1 and hg¼1¼ 1 for n!�1 ð12bÞ

The general solution of Eq. (9) in the upstream and down-
stream region, satisfying the above boundary conditions,
can be represented as follows:

h1 ¼ 1þ
X1
n¼1

Anfn gð Þek2
nn þ hp ð13aÞ

h2 ¼
X1
n¼1

BngnðgÞe�b2
nn þ hp ð13bÞ

where hp the particular integral of Eq. (11), given as

hp ¼
G02
12
ð1� g4Þ þ G1

2
ð1� g2Þ ð14Þ

where G02 ¼ 4X2G2. The functions fn and gn satisfy the fol-
lowing differential equations:

o2fn

og2
þ k2 k2

Pe2
� uðgÞ

� �
fn ¼ 0 ð15Þ

o
2gn

og2
þ b2 b2

Pe2
þ uðgÞ

� �
gn ¼ 0 ð16Þ

Solving Eqs. (15) and (16), the following functional forms
can be obtained for fn and gn:

fn ¼ e�
1
2ig2kn

ffiffiffi
X
p

1F 1 �
iðPe2kn � k3

n þ iPe2
ffiffiffiffi
X
p
þ Pe2knXÞ

4Pe2
ffiffiffiffi
X
p ;

"

1

2
; ig2kn

ffiffiffiffi
X
p
#

ð17aÞ
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gn ¼ e�
1
2g

2bn

ffiffiffi
X
p

1F 1 �
Pe2bn þ b3

n � Pe2
ffiffiffiffi
X
p
þ Pe2bnX

4Pe2
ffiffiffiffi
X
p ;

"

1

2
; g2bn

ffiffiffiffi
X
p
#

ð17bÞ

where 1F 1ðM ; N ; ZÞ ¼
P1

k¼0
Mk
Nk

Zk

k!
. The functions fn and gn

satisfy the following boundary conditions:

f 0nð0Þ ¼ 0; f nð1Þ ¼ 0; g0nð0Þ ¼ 0; gnð1Þ ¼ 0 ð18Þ

These boundary conditions can be used to obtain the eigen-
values and, the coefficients in the following closed forms
(for details, see Appendix A):

An ¼

R 1

0

k2
n

Pe2 � uðgÞ
h i

fn dgR 1

0

2k2
n

Pe2 � uðgÞ
h i

f 2
n dg
¼ 2

kn
ofnð1Þ

ok

� �
k¼kn

ð19Þ

Bn ¼

R 1

0

b2
n

Pe2 þ uðgÞ
h i

gn dgR 1

0

2b2
n

Pe2 þ uðgÞ
h i

g2
n dg
¼ � 2

bn
ognð1Þ

ob

� �
b¼bn

ð20Þ

The dimensionless mean temperature can be obtained as

hm;iðnÞ ¼
R 1

0
uðgÞhi dgR 1

0
uðgÞdg

ð21Þ

The Nusselt number can finally be obtained as

Nui ¼ �
4
ohi
og g¼1

hm;i
, which leads to the following final expression:
NuðnÞ ¼
4
P1

n¼1Bne�b2
nng0nð1Þ �

G0
2

3
� G1

� � R 1

0
uðgÞdgP1

n¼1Bne�b2
nn g0nð1Þ

b2
n
þ b2

n
Pe2

R 1

0 gnðgÞdg
� �

�
R 1

0 uðgÞ G0
2

12
ð1� g4Þ þ G1

2
ð1� g2Þ

� �
dg

ð22Þ
3. Results and discussion

The various cases have been studied taking numerical
values representative of a typical electroosmotic flow, i.e.
r = 4 � 10�4 S/m, Ex = 150 K V/m, l = 9 � 10�4 N s/m2,
a = 50 lm, k = 0.6 W/m K, f = �100 mV, e = 80. Illustra-
tive case studies are first executed by considering the vari-
ations of the parameter G1, keeping all other parameters
as unaltered. The corresponding temperature profiles are
depicted in Fig. 2a–c. Because of symmetry of temperature
profiles with respect to the centre line, the temperature dis-
tribution in the upper half of the channel is only plotted.
Fig. 2a depicts the variations in the non-dimensional tem-
perature profiles, as a function of the non-dimensional
axial position, corresponding to, with G2 � 10�7. In this
case, the channel wall temperature corresponding to
n > 0, i.e. Tw, is less than that corresponding to n < 0, i.e.
T0. Because of the positive heat source term, the non-
dimensional temperature, h, remains always positive, so
that the fluid is always at a higher temperature than the
channel walls. As the flow progresses along the axial direc-
tion, the local fluid temperature and the heat flux decreases.
This is because of a progressive thickening of the thermal
boundary layer, so that the temperature gradient prevailing
across the thermal boundary layer diminishes continu-
ously. A thermally fully developed state is reached at
n � 10, beyond which the amount of heat rejected from
the channel walls is balanced by the volumetric internal
energy generation due to Joule heating. Fig. 2b depicts
the normalized temperature distribution for the case in
which both Joule heating and viscous heating effects can
be neglected (i.e., G1 � 0,G2 � 0), while the other parame-
ters being kept as unaltered. Although in reality the Joule
heating is always associated with electroosmotic flow, this
exercise is executed to compare the present results with
the classical benchmark solutions for thermally developing
yet hydrodynamically developed slug (uniform) flows. It is
observed from Fig. 2b that the normalized temperature
decreases along the channel, as one advances towards fur-
ther downstream direction, qualitatively analogous to the
manner observed in Fig. 2a. Without any volumetric heat
generation, the heat transfer between the channel and the
fluid takes place only over the thermally developing region
(up to n � 10). Since the fluid temperature is always greater
than the wall temperature over the thermal entrance
region, the wall heat flux remains positive, irrespective of
a continuously decreasing temperature difference between
the bulk flow and the wall as one proceeds further down-
stream. Fig. 2c depicts the evolution of the temperature
field along the channel for, G02 � 10�6. In such as case,
the wall is found to be hotter than the fluid at n = 0. How-
ever, the fluid temperature subsequently increases because
of the volumetric heating and thermal conditions main-
tained at the walls, till it exceeds the wall temperature.
Beyond this, the temperature rise is solely due to the volu-
metric heating effects. Because of such transitions in the
physical behaviour, cases with G1 < 0 are characterized
by much shorter thermal entrance lengths, as compared
to the cases with. It is also interesting to observe that for
G1 < 0, the normalized fluid temperature (h) and the wall
heat flux decreases, but the dimensional fluid temperature
(T) increases due to volumetric heating, as the fluid pro-
gresses along the channel. This can be attributed to the fact
that close to n = 0+, the fluid temperature is less than the
wall temperature, whereas for higher values of n the fluid
temperature is likely to become greater than the wall tem-
perature, depending on the strength of volumetric heating.
In between, the flow passes through a regime so that the
difference in temperature between the wall and the fluid
locally tends to zero, which occurs between n = 0.5 and
n = 1, for the situation depicted in Fig. 2c. This, in practice,



Fig. 3. Non-dimensional temperature distribution across the channel at
different downstream locations at Pe = 1, G1 = 1 for: (a) X = 1, (b) X = 0,
(c) X = �1.

Fig. 2. Non-dimensional temperature distribution across the channel at
different downstream locations at Pe = 1, X = 1 for: (a) G1 = 1,
(b) G1 = 0, (c) G1 = �1.
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delays the attainment of the thermally fully developed
state, which is characterized by an invariant T�T w

T b�T w
along

the channel axis, Tb being the bulk mean temperature of
flow.
Fig. 3 depicts the variations in the temperature profile
with changes in values of the parameter X, with Pe = 1,
G1 = 1, and G2 � 10�7. Although the qualitative trends in
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the temperature profiles are observed to be somewhat sim-
ilar for the three different values of X being considered (�1,
0, and 1), the corresponding thermal entrance lengths are
Fig. 4. Non-dimensional temperature distribution across the channel at
different downstream locations for Pe = 1, G1 = 1, with: (a) G02 ¼ 1:14�
10�6, (b) G02 ¼ 0:07128, (c) G02 ¼ 1:14048.
found to be markedly different. With a favorable axial pres-
sure gradient (signified by positive values of X), a stronger
axial velocity component delays the growth of the thermal
boundary layer, for a given Prandtl number. Thus, for
X = 1, the thermal entrance length is observed to be the
greatest (n = 10), whereas the same appears to be progres-
sively lower for X = 0 and X = �1, for which the values of
n are approximately 8 and 5, respectively.

It is important to mention here that the parameters
assumed for obtaining the plots in Figs. 2 and 3 conform
to the cases in which the viscous heating effects are negligi-
ble in comparison to the Joule heating effects (G2/
G1 � 10�6). However, in order to assess the influences of
viscous dissipation, one needs to consider higher values
of X, so that the term G02ðG02 ¼ 4X2G2Þ becomes significant
as compared to the Joule heating term,G1. The distinctive
influences of the parameter X, reminiscent of these condi-
tions, are captured through the plots depicted in Fig. 4a–
c, which demonstrate the temperature distributions for
Fig. 5. Non-dimensional temperature distribution across the channel at
different downstream locations for G1 = 1, G02 � 0: (a) Pe = 2.5 and
(b) Pe = 5.



Fig. 7. Nusselt number variations for different values of G1, with Pe = 5,
X = 1.
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three different orders of magnitude of X, with Pe = 1,
andG1 = 1. Fig. 4a corresponds to X = 0, for which the
value of G02 turns out to be 0. The flow becomes thermally
fully developed at about n = 10. Fig. 4b corresponds to
X = 250, for which G02 ¼ 0:07128. It can be observed that
such a high value of X results in large axial velocity scales,
and hence the thermal boundary layer develops over a
much larger distance (n = 1000) as compared to the previ-
ous case. Fig. 4c corresponds to X = 1000, resulting in
G02 ¼ 1:14048, which is of comparable order with the Joule
heating term, G1 = 1. In this case, the attainment of a ther-
mally fully developed state is substantially delayed, and
occurs at approximately n = 4900. It can also be observed
that the final temperature is appreciably higher for the case
with X = 1000, as compared to the cases with X = 250 and
X = 1, attributed to the significant contribution of viscous
dissipation effects in the former case.

In addition to temperature profile shown in Figs. 1 and
5a and b show temperature variation for similar parame-
ters but with different Peclet numbers, i.e. 2.5 and 5, respec-
tively.The temperature profiles are very much similar in all
respects because of similar heat generation and loss terms
except for the fact that the thermally fully developed state
is attained at smaller values of n (non dimensional zed axial
distance) for increasing Peclet numbers.

Fig. 6 depicts the variations in Nu for different values of
X, with Pe = 5 and G1 = 1. For lower values of X, the
quantitative differences in the values of Nu with variations
in X are not too prominent, except for the fact that the flow
reaches a thermally fully developed state at somewhat lar-
ger axial distances for higher values of X. However, for sig-
nificantly large values of X, the Nu increases dramatically
in the thermal entrance region, such as the case with
X = 250, as evident from Fig. 5. In such cases, the viscous
dissipation becomes of comparable order with the Joule
heating, for which the driving temperature gradients for
Fig. 6. Nusselt number for different values of X, with Pe = 5, G1 = 1,
G2 = 7.128 � 10�6.
convective heat transfer are much more, for a given ther-
mal boundary layer thickness. In reality, this effect is fur-
ther aggravated by the fact that a higher value of X is
also characterized with a thinner thermal boundary layer
at a given axial location, which in turn magnifies the local
temperature gradients prevailing across the thermal bound-
ary layer even further. As a combined consequence of these
two effects, the flow becomes thermally fully developed at
about n = 20 for X = 250, which is higher than the thermal
entrance lengths obtained for the other two chosen values
of X (for which n = 8, approximately).

Fig. 7 depicts the sensitivities of Nu with varying G1, for
Pe = 5, and X = 1. Although the value of G2 would also
change with different values of G1, its effect is observed to
be negligible for the ranges of values considered. It can
be seen that the value of Nu approaches the same asymp-
totic limit for different magnitudes of the heat source term,
so long as G1 6¼ 0. For G1 = 0, the value of Nu depends on
the first few terms of the expansion series representing the
temperature distribution, and approaches a different limit.
Particular interesting cases with classical importance can
also be retrieved from the present generalized model. For
example, with G1 = 0 and X = 0, an asymptotic Nusselt
number of 2.467 can be obtained, which exactly agrees with
the classical result [15] of thermally fully developed flow in
a parallel plate channel with plug-type velocity profiles and
being subjected to isothermal wall conditions. On an other
extreme, G1 = 0 and X ?1 yields an asymptotic Nusselt
number of 7.54, which corresponds to the limiting case of
thermally fully developed pressure-driven flow in a parallel
plate channel with isothermal walls [15].

4. Conclusions

A semi-analytical approach towards the solution of
extended Graetz problem for combined pressure-driven
and electroosmotic flows in microchannels with step
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changes in wall temperature has been presented in this
study. From the analysis of the results obtained from the
present model, following important inferences can be
drawn:

� For low values of X, the viscous dissipation effects are
negligible in comparison to the Joule heating effects, in
terms of dictating the temperature profiles and the con-
sequent heat transfer characteristics.
� For positive values of G1, the temperature decreases

along the axial direction till a condition is reached when
the Joule heating equals the heat lost by the fluid to the
walls. For negative values of G1, on the other hand, the
temperature initially increases along the axial direction
because of the combined effect of Joule heating and heat
transfer from the wall. The temperature increases to a
point where it becomes greater than the wall tempera-
ture and sets the heat transfer to the wall in equilibrium
with Joule heating.
� Positive values of X (favorable pressure gradients) lead

to enhanced axial velocity scales and necessitate larger
axial distances to achieve a thermally fully developed
state, whereas for negative values of X (adverse pressure
gradients) the attainment of thermally fully developed
state is substantially delayed.
� Substantially large positive values of X may render the

viscous dissipation of comparable order as the Joule
heating, which, aided by a thinning of the thermal
boundary layer for higher axial velocities due to stron-
ger favorable pressure gradients, might give rise to sub-
stantially higher rates of heat transfer in the thermal
entrance region. However, for chosen sets of the param-
eters G1 and X, the Nusselt number in the thermally fully
developed state virtually approaches similar asymptotic
limits, except for the case with G1 = 0 for which classical
heat transfer results can be retrieved.

Appendix A. Determination of the eigenvalues

As explained in the paper by Lahjomri and Ouabarra
[16] the functions f and g satisfy the following differential
equations:

o
2fn

og2
þ k2 k2

Pe2
� uðgÞ

� �
fn ¼ 0 ðA1Þ

o2gn

og2
þ b2 b2

Pe2
þ uðgÞ

� �
gn ¼ 0 ðA2Þ

coupled with the following boundary conditions
f 0ð0Þ ¼ 0; f ð1Þ ¼ 0; g0ð0Þ ¼ 0; gð1Þ ¼ 0 ðA3Þ
The fundamental problem associated with this system of
equations is the determination of eigenvalues an and bn

and the coefficients An and Bn. We have the general solu-
tion for temperature distribution as follows:
h1 ¼ 1þ
X1
n¼1

AnfnðgÞek2
nn þ hp ðA4Þ

h2 ¼
X1
n¼1

BngnðgÞe�b2
nn þ hp ðA5Þ

From the considerations of the continuity of temperature
and temperature gradient at n = 0, one may write

h1 ¼ h2 at n ¼ 0 8 0 6 g 6 1 ðA6Þ
oh1

on
¼ oh2

on
at n ¼ 0 8 0 6 g 6 1 ðA7Þ

Substituting the solutions (A4) and (A5) in Eqs. (A6) and
(A7), one may obtain the following equations with un-
knowns An and Bn:

1þ
X1
n¼1

AnfnðgÞ ¼
X1
n¼1

BngnðgÞ ðA8Þ

X1
n¼1

k2
nAnfnðgÞ ¼ �

X1
n¼1

b2
nBngnðgÞ ðA9Þ

Multiplying Eq. (A8) by b2
m

Pe2 þ uðgÞ
h i

gm and integrating the
same with respect to g from 0 to 1, one may obtainZ 1

0

b2
m

Pe2
þ uðgÞ

� �
gm dg ¼ Bm

Z 1

0

b2
m

Pe2
þ uðgÞ

� �
g2

m dg

þ
X1
n¼1

An

Z 1

0

� b2
m

Pe2
� uðgÞ

� �
gmfn dg

þ
X1
n¼1
ðn 6¼mÞ

Bn

Z 1

0

b2
m

Pe2
þ uðgÞ

� �
gmgn dg

ðA10Þ

Eq. (A10) is obtained by utilizing the fact that function g

satisfies the following properties:Z 1

0

b2
m þ b2

n

Pe2
þ uðgÞ

� �
gmgn dg ¼ 0; bm 6¼ bn ðA11Þ

Z 1

0

b2
m þ b2

n

Pe2
þ uðgÞ

� �
gmgn dg 6¼ 0; bm ¼ bn ðA12Þ

Using the boundary conditions given by Eq. (A3), Eq. (10)
yieldsZ 1

0

b2
m

Pe2
þ uðgÞ

� �
gm dg ¼ Bm

Z 1

0

b2
m

Pe2
þ uðgÞ

� �
g2

m dg

þ
X1
n¼1

An

Z 1

0

� b2
m

Pe2
� uðgÞ

� �
gmfn dg

�
X1
n¼1
ðn 6¼mÞ

Bn
b2

n

Pe2

Z 1

0

gmgn dg ðA13Þ

Similarly, multiplying the Eq. (A9) by gm
Pe2 and integrating

with respect to g from 0 to 1, one gets

�
X1
n¼1

Bn
b2

n

Pe2

Z 1

0

gmgn dg ¼
X1
n¼1

An
k2

n

Pe2

Z 1

0

gmfn dg ðA14Þ
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After some manipulation, Eq. (A13) takes the following
form, by utilizing Eq. (A14)Z 1

0

b2
m

Pe2
þ uðgÞ

� �
gm dg ¼ Bm

Z 1

0

2b2
m

Pe2
þ uðgÞ

� �
g2

m dg

þ
X1
n¼1

AnF n;m ðA15Þ

where

F n;m ¼
Z 1

0

k2
n � b2

m

Pe2
� uðgÞ

� �
gmfn dg ðA16Þ

Again, multiplying Eq. (A8) by k2
m

Pe2 � uðgÞ
h i

fm, and utilizing

similar properties as given by Eqs. (A11) and (A12) for fn,
one may obtain the following expression:Z 1

0

k2
m

Pe2
� uðgÞ

� �
fm dg ¼ �Am

Z 1

0

2k2
m

Pe2
� uðgÞ

� �
f 2

m dg

þ
X1
n¼1

BnF m;n ðA17Þ

It can be shown that the functions Fn,m and Fm,n are zero,
corresponding to any legitimate value of m and n. If one
considers any two solutions fn and gm of Eqs. (A1) and
(A2), multiplies the first one by gm and the second one by
fn, the following equations can readily be obtained:

gmð1Þf 0nð1Þ � fnð1Þg0mð1Þ þ ðk
2
n þ b2

mÞF n;m ¼ 0 ðA18Þ
gnð1Þf 0mð1Þ � fmð1Þg0nð1Þ þ ðk

2
m þ b2

nÞF m;n ¼ 0 ðA19Þ

Using the boundary conditions given by Eq. (A3), it is triv-
ial to verify that Fn,m and Fm,n are zero for any permissible
value of m and n. Using Eqs. (A15), (A17), (A18) and
(A19), one may get the expressions for An and Bn, as
follows:

An ¼

R 1

0

k2
n

Pe2 � uðgÞ
h i

fn dgR 1

0

2k2
n

Pe2 � uðgÞ
h i

f 2
n dg
¼ 2

kn
ofnð1Þ

ok

� �
k¼kn

ðA20Þ

Bn ¼

R 1

0

b2
n

Pe2 þ uðgÞ
h i

gn dgR 1

0

2b2
n

Pe2 þ uðgÞ
h i

g2
n dg
¼ � 2

bn
ognð1Þ

ob

� �
b¼bn

ðA21Þ
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